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T, = —<uiu j> 1s the kinematic Reynolds stress
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T, = —<uiu j> 1s the kinematic Reynolds stress

Consider velocity relative to the geostrophic velocity:
Jkxu,=—Vp/p=—gVn
The steady, horizontally homogeneous boundary layer egn is:
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R eynolds stress proportional to velocity gradient:

iff

Ty

u_; be'st u(z— —o0)=0;

= K




Ekman, |9

R eynolds stress proportional to velocity gradient: 7= K0u/0z=Ku,
ifu=Ku_; be's: u(z——o00)=0; 7,=Ku_0)
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Solution: 0(z) = (—)"F,e /¥




Ekman, | 9

R eynolds stress proportional to velocity gradient: 7= K0u/0z= Ku,_

ifu=Ku_; bc's: u(z——o0)=0; 7T,=Ku (0)
g T
Solution: ﬁ(z) — (1)1/2 720 P 2K
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Ekman layer top
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Near a boundary in a neutrally stratified flow, stress is nearly constant and
the velocity profile is logarithmic, hence the dimensionless shear 1s
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Eddy Viscosity
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u_ scale velocity, good choice is friction velocity: u, = 7/ \/:

A turbulent length scale for vertical exchange

Near a boundary in a neutrally stratified flow, stress is nearly constant and
the velocity profile is logarithmic, hence the dimensionless shear 1s
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VaN

U,

In the neutral surface layer : u_=u,; A= /<;|z| — K = u*ohz|z|

%) ?

BUT the surface layer only extends some small fraction of the planetary
scale, ~0.05u./f, typically ~5m in the ocean, ~150 m in the atmosphere.
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Eddy Viscosity, Mixing Length & the uation
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Steady, horizontally homogeneous, neglect vertical transport terms:
P.+F =¢

T-u,—(w'by=¢
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Eddy Viscosity, Mixing Length & the ?{"‘fuation

Steady, horizontally homogeneous, neglect vertical transport terms:
P.+F =¢

T-u,—(w'by=¢

Po=u;/K=u/\
i (a1, \2 '\ 2 V4
=3 In the neutral outer (Ekman) layer, measure € and u, = ((u'w') +(v'w')")

to estimate

X=u s
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u*(COV) — (<M'W'>2 —|—<V'W'>2)l/4

1/3
u*(spec) — (gApeak)



u, = 1:1/2, TIC 2,8 m
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u, = 1:1/2, TIC 2,8 m

—#— covar estimate
—m— spectral estimate |
260 261
Day of 1998

Turbulent Heat Flux, TIC 2, 8 m

—#— covar estimate
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Day of 1998
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|OBL Similarity

ifl?t:(()—T — F=u 0,1 a=0,U; z="Cu,/f
0z
T

iU = of . 1" —order closure: — T = ﬂg’" oU _ K*a—U
¢ uz, ¢ ¢
T i - o A n 7
— = T =0; Boundary conditions: T(( — —0c0)=0; T({(=0)=——"-=1
0" K. Ul




|OBL Similarity
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ISW Kinematic Stress ; Mixing Length Estimates
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A, K measurements

ISW Kinematic Stress ; Mixing Length Estimates Discrete Eddy Viscosity/Diffusivity
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ISW Kinematic Stress

A, K measurements
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(from the Ekman solution)
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Similarity (continued)

dimensionless mixing length, A=fA / u,

For similarity, K, is constant in the Ekman layer,

and i1f A increases linearly in the surface

A=xlz|/ @,/ f)

layer (where A = K|z

A,
U, ! f
K

, the surface layer extent 18
Surface Layer ) Y

2], =

Ekman Layer

C=fz/u,



Similarity (continued)

dimensionless mixing length, A=fA / u,

Surface Layer

A=xl|z/(u, ! f)

C=fz/u,

Ekman Layer

For similarity, K, is constant in the Ekman layer,
and i1f A increases linearly in the surface
layer (where A = K|z

A,
U, ! f
K

), the surface layer extent 1s

2], =

From the LOW, the change in velocity

across the surface layer 1s

Au 1
— = —log
Uy K “

Zsl u*o A*

+log—)
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Similarity (continued)

12 m

So now we can put together 20m

an “inverse drag law:”
26 m

Uy Uy U
o A. 1
=—|log—+log—+ (1-1)
1z, K 2K.

log Ro. — AFiB]

Ro. =u., /(fz,) Surface friction Rossby number

A and B are similarity constants (neutral stability)



Similarity (continued)

A.
A=-1o +1+ ~23
5 K «/
A.
«/ZA* 2K
for A, =0.028

A

f=Y — diogRo, — A—iB)
U, K

u 9
C = *0 -1
Vo




Dimensionless Surface Velocity
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Quadratic Drag Coefficient (U™
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ISPOL (western 40 mm Multiyear pack ice McPhee, Deep-Sea Res., 2008,
Weddell) doi;10.1016/5.dsr1012.2007
SHEBA (western 49 mm Multiyear pack ice McPhee, Air-Ice-Ocean
Weddell) Interaction, 2008
NPEO (North Pole) 90 mm Multiyear pack ice, Shaw et al., JGR, 2008, do1:
highly deformed 10.1029/2007JC004550
4 mm Thin, first year ice Sirevaag et al., JGR, 2010, doi:
10.1029/2008JC005141
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ISPOL (western 40 mm Multiyear pack ice McPhee, Deep-Sea Res., 2008,
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Neutral stratification, 2 length scales (the smaller scale governs):
|z|, and the planetary scale, u.,/f, and associated mixing lengths

‘ZI<A* vo! (5S)
2> A, /(Kf)




Neutral stratification, 2 length scales (the smaller scale governs):
|z|, and the planetary scale, u.,/f, and associated mixing lengths

A=Az <M, /()
do =Nl f gz Au (6S)

Melting or freezing at the ice/water interface introduces
buoyancy flux, and a third turbulent scale, the Obukhov length:
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Neutral stratification, 2 length scales (the smaller scale governs):
|z|, and the planetary scale, u.,/f, and associated mixing lengths

)\Sl— ; ‘z\<A*u*O/(/<;f)

Melting or freezing at the ice/water interface introduces
buoyancy flux, and a third turbulent scale, the Obukhov length:

3
RIS S50 (where <w'b'>0 = §<w'p'>0)
0

m(w'b'>0

il 1 —_, e L O ) . T r O TN T

When L is small and positive, buoyancy flux from melting quells
turbulence, decreases turbulence scales, and increases shear.

When L is small in magnitude and negative, buoyancy flux from
freezing enhances turbulence, increases turbulence scales, and
decreases shear.
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Stratification (continued) . 'y

Consider stabilizing buoyancy flux, either from melting at the boundary, or from
an existing density gradient in the IOBL
Al B

: : . P
Dimensionless TKE equation: 1 + -2 =1—R =1-—==
P, kL u,



Stratification (continued) .

Consider stabilizing buoyancy flux, either from melting at the boundary, or from
an existing density gradient in the IOBL

Dimensionless TKE equation: 14 L. =1-R,=1- Al el

P, %L U,

For viable turbulence the flux Richardson number is less than a critical value, R, ~0.2

(w'b')A
= — <R = AL<REkL
U, AlO, Ch 4
Adymptotes: A\ = — A/ f for L= uf/(m(w'b'>) — 00
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Stratification (continued). o

Consider stabilizing buoyancy flux, either from melting at the boundary, or from
an existing density gradient in the IOBL

g

Dimensionless TKE equation: 1+ b _ 1-R, =1- Al BEg
F, S kL

For viable turbulence the flux Richardson number is less than a critical value, R, ~0.2

(w'b') A
;=——=—<R = A, <REkL
U, AlO, Ch 4
Adymptotes: A\ = — A/ f for L= uf/(m(w'b'>) — 00
A — RKL for L —0"

S b et 3

An expression with these limits:
>\max — n*A*u* /f

— i

A,

where 7. =1+

u. / (fL) 1s the ratio of the planetary length scale to the Obukhov length
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Statically Unstable Buoyancy Flux




Statically Unstable Buoyancy Flux

Drift
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Neutral (no interface buoyancy flux) OBL

/ - C) A = K‘ Z‘ Surface layer

A=A, /‘ f ‘ Mixing layer

Us ) / C A— KRCLp Pycnocline
(W'b)




Positive buoyancy flux from melting

Main Pycnocline




Destabilizing buoyancy flux from freezing

A\ = A*”*pn*pz /‘ f‘ Pycnocline
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Geostrophic Currents
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Dynamic heightis DH = - units: dyn-m




Geostrophic Currents
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Sa Geopotential Anomaly: D'(p)=— f Sdp' units: m’s™
» /
§=p(T,S,p)"' —p(0,35,p)"" is specific volume anomaly
AN A% W —P' ,
Dynamic heightis DH = —— units: dyn-m
3 B P

If flow 1s small at some reference pressure surface, p, then velocity at the surface (p = 0) due to

horizontal density gradients above p is given by:
, fkxv, =—-Vo'(p)




Dynamic height relative to 400 dbar, 2008-2011




Dynamic height relative to 400 dbar, PHC3 Climatology




ITP 55, 20-Sep-2011 to 11-Dec-2011

Dynamic Heights, ITP 55

km east from Chukchi Shelf
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Dynamic height relative to 400 dbar, 2008-2011

Dynamic heights in circle centered at 75°N, 150°W
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Ekman Pumping
0
if f udz =ifM = 1,

V-M= —f—dz— . =—VXT,

RSN e ’t j &t_ﬁ.
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Ekman Pumping
0
iffudz:ifM:TO
V-M = —f—dz— ==V XT,

T, 1S the stress exerted on the ocean surface, modified by ice.

In late summer, 1ce internal 1ce forces are typically small and
the force balance 1s approximately

/\

T,~T, —ifd.V

1ce " wd

where 7 is wind stress divided by water density, d. . is ice draft,

and de 18 the wind driven component of ice velocity




Ekman pumping displacement, August through October
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In the first decade of the NCEP-CFSR reconstruction, late summer
downwelling occurred below about 75°N, with upwelling in the northern part
of the Canada Basin. Average Sep ice coverage was extensive.

165°W 1590 w 135°W

- -2

-10
Average ASO Ekman displacement, 1980-1989



In the most recent decade, late summer downwelling occupies the entire
Basin. One implication is that the upper ocean in the Canada Basin is a heat
source rather than sink for the deeper ocean.
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Average ASO Ekman displacement, 2002-2011
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Mean profiles within 20 km of 79.17°N 138.5°W
0 T T T ] T T

7 ptoﬁles around 26 Sep 2007
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The downward displacement of the upper temperature maximum corresponds to an
Ekman pumping velocity of about 3.5 meters per month. 4 |
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enhancing late summer anticyclonic atmospheric conditions (and Ekman
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Implications

Currents on the periphery of the Beaufort Gyre have increased dramatically
(5-6 x) 1n the past few years, particularly just offshore of the Beaufort and
Chukchi shelves.

The stronger currents may be preventing thick, multiyear ice advected
southward on the eastern side of the BG from reaching its interior.

During summer, increased temperature contrast between more open water in
the west and southward advection of compact ice in the east may be
enhancing late summer anticyclonic atmospheric conditions (and Ekman

pumping).

Thus a positive feedback may be at play between convergence of seasonally
available fresh water from melting and runoff, and early removal of ice in the
western Beaufort Gyre.
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